Instrumental Neutron Activation Analysis of Metavolcanic Rocks from the Vicinity of Fort Bragg, North Carolina

Report Prepared by:

Robert J. Speakman & Michael D. Glascock Research Reactor Center University of Missouri Columbia, MO 65211

For:

Vin Steponaitis Research Laboratories of Archaeology University of North Carolina Chapel Hill, NC 27599-3120

September 19, 2002

Introduction

50 Metavolcanic rock specimens from Fort Bragg, North Carolina and surrounding area were analyzed by instrumental neutron activation analysis (INAA) at the University of Missouri Research Reactor Center (MURR). The samples were collected from seventeen discrete quarry locations in the region. Here, we describe sample preparation and analytical techniques used at MURR and report the subgroup structure identified through quantitative analysis of the ceramic compositional data set.

Background

As part of a multifaceted pilot project, the Archaeometry Laboratory at MURR was contracted to conduct INAA on metavolcanic rocks recovered from the Fort Bragg region of North Carolina. The purpose of this project was to provide a preliminary indication of the range of compositional variability within metavolcanic rocks in the region. The 50 rock samples originate from six counties surrounding Fort Bragg military installation (Figure 1). One generalized quarry location, Uwharries 1, was extensively sampled (n=21) in order to assess inter-group variability. Other quarry groups were sampled less intensively in order to maximize the number of quarries that could be sampled permitting compositional variability across a larger spatial area to be assessed.

Sample Preparation

The rock samples were powdered by Brent Miller at the University of North Carolina at Chapel Hill using an aluminum-oxide shatter box. The samples were then shipped to MURR in powder form. The powdered samples were oven-dried at 100 degrees C for 24 hours. Portions of approximately 150 mg were weighed and placed in small polyvials used for short irradiations. At the same time, 200 mg of each sample were weighed into high-purity quartz vials used for long irradiations. Along with the unknown samples, reference standards of SRM-1633a (coal fly ash) and SRM-688 (basalt rock) were similarly prepared, as were quality control samples (i.e., standards treated as unknowns) of SRM-278 (obsidian rock) and Ohio Red Clay.

Irradiation and Gamma-Ray Spectroscopy

Neutron activation analysis of ceramics at MURR, which consists of two irradiations and a total of three gamma counts, constitutes a superset of the procedures used at most other laboratories (Glascock 1992; Neff 1992, 2000). As discussed in detail by Glascock (1992), a short irradiation is carried out through the pneumatic tube irradiation system. Samples in the polyvials are sequentially irradiated, two at a time, for five seconds at a neutron flux of 8 x 10^{13} n/cm²/s. The 720-second count yields gamma spectra containing peaks for the short-lived elements aluminum (Al), barium (Ba), calcium (Ca), dysprosium (Dy), potassium (K), manganese (Mn), sodium (Na), titanium (Ti), and vanadium (V). The samples encapsulated in quartz vials are subjected to a 24-hour irradiation at a neutron flux of 5 x 10^{13} n/cm²/s. This long irradiation is analogous to the single irradiation utilized at most other laboratories.

After the long irradiation, samples decay for seven days, then are counted for 2,000 seconds (the "middle count") on a high-resolution germanium detector coupled to an automatic sample changer. The middle count yields determinations of seven medium half-life elements, namely arsenic (As), lanthanum (La), lutetium (Lu), neodymium (Nd), samarium (Sm), uranium (U), and ytterbium (Yb). After an additional three- or four-week decay, a final count of 9,000 seconds is carried out on each sample. The latter measurement yields the following 17 long half-life elements: cerium (Ce), cobalt (Co), chromium (Cr), cesium (Cs), europium (Eu), iron (Fe), hafnium (Hf), nickel (Ni), rubidium (Rb), antimony (Sb), scandium (Sc), strontium (Sr), tantalum (Ta), terbium (Tb), thorium (Th), zinc (Zn), and zirconium (Zr).

Elemental concentration data from the two irradiations and three counts (a total of 33 elements) are assembled into a single tabulation and stored in a dBASE III file along with descriptive information available for each sample. The diskette included with this report contains the complete database in two formats, Excel and dBASE/Foxpro.

Quantitative Analysis of the Chemical Data

The analyses at MURR described previously produced elemental concentration values for 32 or 33 elements in most of the analyzed samples. A few elements, especially arsenic, nickel, chromium, and vanadium were below detection in many of the samples. These four elements were therefore deleted from consideration in the analysis. Quantitative analysis was subsequently carried out on base 10 logarithms of concentrations for these data. Use of log concentrations instead of raw data compensates for differences in magnitude between major elements, such as iron, on one hand and trace elements, such as the rare earth or lanthanide elements (REEs), on the other hand. Transformation to base 10 logarithms also yields a more nearly normal distribution for many trace elements.

The goal of quantitative analysis of the chemical data is to recognize compositionally homogeneous groups within the analytical database. Based on the "provenance postulate" (Weigand, Harbottle, and Sayre 1977), such groups are assumed to represent geographically restricted sources or source zones. The location of sources or source zones may be inferred by comparing the unknown groups to knowns (source raw materials) or by indirect means. Such indirect means include the "criterion of abundance" (Bishop, Rands, and Holley 1982) or arguments based on geological and sedimentological characteristics (e.g., Steponaitis, Blackman, and Neff 1996).

Initial hypotheses about source-related subgroups in the compositional data can be derived from non-compositional information (e.g., archaeological context, decorative attributes, etc.) or from application of pattern-recognition techniques to the chemical data. Principal components analysis (PCA) is one technique that can be used to recognize pattern (i.e., subgroups) in compositional data. PCA provides new reference axes that are arranged in decreasing order of variance subsumed. The data can be displayed on combinations of these new axes, just as they can be displayed relative to the original elemental concentration axes. PCA can be used in a pure pattern-recognition mode, i.e., to search for subgroups in an undifferentiated data set, or in a more evaluative mode, i.e., to assess the coherence of hypothetical groups suggested by other criteria (archaeological context, decoration, etc.). Generally,

compositional differences between specimens can be expected to be larger for specimens in different groups than for specimens in the same group, and this implies that groups should be detectable as distinct areas of high point density on plots of the first few components.

One strength of PCA, discussed by Baxter (1992) and Neff (1994), is that it can be applied as a simultaneous R- and Q-mode technique, with both variables (elements) and objects (individual analyzed samples) displayed on the same set of principal component reference axes. The twodimensional plot of element coordinates on the first two principal components is the best possible twodimensional representation of the correlation or variance-covariance structure in the data: Small angles between vectors from the origin to variable coordinates indicate strong positive correlation; angles close to 90° indicate no correlation; and angles close to 180° indicate negative correlation. Likewise, the plot of object coordinates is the best two-dimensional representation of Euclidean relations among the objects in log-concentration space (if the PCA was based on the variance-covariance matrix) or standardized log-concentration space (if the PCA was based on the correlation matrix). Displaying objects and variables on the same plots makes it possible to observe the contributions of specific elements to group separation and to the distinctive shapes of the various groups. Such a plot is called a "biplot" in reference to the simultaneous plotting of objects and variables. The variable interrelationships inferred from a biplot can be verified directly by inspection of bivariate elemental concentration plots (note that a bivariate plot of elemental concentrations is not a "biplot").

Whether a group is discriminated easily from other groups can be evaluated visually in two dimensions or statistically in multiple dimensions. A metric known as Mahalanobis distance (or generalized distance) makes it possible to describe the separation between groups or between individual points and groups on multiple dimensions. The Mahalanobis distance of a specimen from a group centroid (Bieber et al. 1976; Bishop and Neff 1989; Neff 2001; Harbottle 1976; Sayre 1975) is:

$$D_{y,X}^{2} = \left[y - \overline{X}\right]^{t} I_{X} \left[y - \overline{X}\right]$$
(1)

where y is 1 x m array of logged elemental concentrations for the individual point of interest, X is the n x m data matrix of logged concentrations for the group to which the point is being compared with X being its 1 x m centroid, and I_x is the inverse of the m x m variance-covariance matrix of group X. Because Mahalanobis distance takes into account variances and covariances in the multivariate group it is analogous to expressing distance from a univariate mean in standard deviation units. Like standard deviation units, Mahalanobis distances can be converted into probabilities of group membership for each individual specimen (e.g., Bieber et al. 1976; Bishop and Neff 1989; Harbottle 1976). For relatively small sample sizes, it is appropriate to base probabilities on Hotelling's T², which is a multivariate extension of the univariate Student's t.

With small groups, Mahalanobis distance-based probabilities of group membership may fluctuate dramatically depending on whether or not each specimen is assumed to be a member of the group to which it is being compared. Harbottle (1976) calls this phenomenon "stretchability" in reference to the tendency of an included specimen to stretch the group in the direction of its own location in the elemental concentration space. This problem can be circumvented by cross-validation (or "jackknifing"), that is, by removing each specimen from its presumed group before calculating its own probability of membership (Baxter 1994; Leese and Main 1994). This is a conservative approach to group evaluation that may sometimes exclude true group members. All probabilities discussed below are cross-validated.

In the present case, several of the group sizes are smaller than the total number of variates, and this places a further constraint on use of Mahalanobis distance: with more variates than objects, the group variance-covariance matrix is singular thus rendering calculation of I_x (and D^2 itself) impossible. Dimensionality of the groups therefore must be reduced somehow. One approach to dimensionality reduction would be to eliminate elements considered irrelevant or redundant. The problem with this approach is that the investigator's preconceptions about which elements should best discriminate sources may not be valid; it also squanders one of the major strengths of INAA, namely its capability to determine a large number of elements simultaneously. An alternative approach to dimensionality reduction, used here, is to calculate Mahalanobis distances not with log concentrations but with scores on principal components extracted from the variance-covariance or correlation matrix of the complete data set. This approach entails only the assumption, entirely reasonable in light of the above discussion of PCA, that most group-separating differences should be visible on the largest several components. Unless a data set is highly complex, with numerous distinct groups, using enough components to subsume 90% of total variance in the data may be expected to yield Mahalanobis distances that approximate Mahalanobis distances in the full elemental concentration space.

Results and Conclusion

Based on the elemental data and spatial proximity between quarries, the analyzed Fort Bragg lithic subdivide into five clear compositional groups and three possible groups—Uwharrie 1, Uwharrie 2, Chatham 1, Chatham 2, Chatham 3, Cape Fear, Person, and Durham. There is also a tantalizing hint that several other possible groups may exist but this can only be proven through additional sampling. Figures 2 through 9 illustrate the basic data structure for the analyzed sample. Table 1 presents descriptive data and group assignments for the analyzed sample.

Figure 2 (and 3) shows the first two components derived from a PCA of the variancecovariance matrix for the 29 elements retained for quantitative analysis. Looking at the first biplot (Figure 2), the first component expresses enrichment of cobalt, calcium, strontium, and transition metals together with dilution of rare earth elements while the second component expresses an enrichment of cesium, barium, and antimony. Eigenvalues and eigenvectors for the PCA can be found at the end of this report.

Of the eight groups, Uwharrie 1 is statistically the most valid of the groups, a consequence of the number of samples having membership in this group. Additional analysis of source materials from this

quarry probably will not affect the basic structure of this group. Mahalanobis Distance calculations (Table 2) indicates all samples assigned to this group have greater than 1% probability of membership.

Small group size prohibited the use of Mahalanobis Distance to test group membership in the other compositional groups. However all of the samples with the exception of a single Chatham 1 sample (FBL027) have less than 1% probability of membership in the Uwharrie 1 reference group (Table 3)

Uwharrie 2 consists of five samples from three discrete locations. It is possible that additional sampling may determine that one or more compositional subgroups exist for materials from these quarry areas.

Chatham 1 consists of four samples from a single location. This group in several projections of the data tends to be relatively heterogeneous. Additional sampling of material from this quarry may determine that multiple compositional subgroups exist. For example, two samples are laminated mudstone, one is felsic aphanite, and one is felsic metasandstone. Analysis of several more of the mudstones may demonstrate that the mudstones are chemically distinct from the felsic rocks.

Chatham 2 forms a relatively homogeneous compositional group. Additional sampling of material from this quarry will unlikely change the basic group structure.

Material categorized as Chatham 3 forms a relatively heterogeneous group. If sample FBL038 is excluded from the group, it is possible that the remaining three samples may form a single group (i.e., Figures 4 and 6). This may be a reflection of the occurrence of multiple composition subgroups in the sample that could be identified through additional analyses. Even though Chatham 3 is spatially close to Chatham 1 and Chatham 2, this group is distinct from these sources and as a whole has measurable concentrations of arsenic, chromium, and vanadium—something which cannot be said about the other compositional groups.

Like Chatham 3, there is the possibility that multiple subgroups exist in samples from the Cape Fear quarry. If data derived from sample FBL039 ignored, the remaining samples form a relatively compact group (i.e., Figures 3, 4, and 6). Descriptive information for the samples indicates that FBL039 is white, whereas, the remaining three samples are green indicating color may in part reflect some of the compositional variability in the samples from this area. Additional sampling of source material from this quarry should be attempted in order to refine this group(s).

Samples assigned to the Durham group form a relatively homogeneous group. It is unlikely that additional sampling will affect the basic group structure.

Samples from Person County tend to be fairly heterogeneous. Analyses of additional samples from this quarry are necessary.

As a whole, this pilot project has been successful. Analysis by INAA has resulted in the identification of several chemically distinct lithic sources. However, additional sampling of certain source material as discussed above is necessary to refine some of the possible groups. Additionally, it is preferable that all of the groups contain at a minimum six samples (though eight would be better) in order to better validate the group assignments using some of the statistical routines employed at MURR. We also recommend that in addition to the analysis of additional source samples, the next phase of this project include artifacts in order to provide the project with an archaeological component.

Acknowledgements

We thank Nicole Little and Kyra Lienhop for carrying out the lab work on the project.

References

Baxter, M. J.

1992	Archaeological uses of the biplot a neglected technique? in <u>Computer Application</u> and <u>Quantitative Methods in Archaeology</u> , 1991, edited by G. Lock and J. Moffett BAR International Series S577, 141-148. Tempvs Reparatvm, Archaeological and Historical Associates, Oxford.	<u>)ns</u>
1994	Stepwise discriminant analysis in archaeometry: a critique. Journal of Archaeologica Science 21:659-666.	<u>1</u>
Bieber, A. M. Jr.	D. W. Brooks, G. Harbottle, and E. V. Savre	
1976	Application of multivariate techniques to analytical data on Aegean ceramics. <u>Archaeometry</u> 18:59-74.	
Bishop, R. L. and	l H. Neff	
1989	Compositional data analysis in archaeology. In <u>Archaeological Chemistry IV</u> , edited by R. O. Allen, pp. 576 - 586. Advances in Chemistry Series 220, American Chemical Society, Washington, D.C.	1
Bishop, R. L., R.	L. Rands, and G. R. Hollev	
1982	Ceramic compositional analysis in archaeological perspective. In <u>Advances in</u> <u>Archaeological Method and Theory</u> , vol. 5, pp. 275-330. Academic Press, New York.	
Glascock. M. D.		
1992	Characterization of archaeological ceramics at MURR by neutron activation analysi and multivariate statistics. In <u>Chemical Characterization of Ceramic Pastes in</u> <u>Archaeology</u> , edited by H. Neff, pp. 11 - 26. Prehistory Press, Madison, WI.	S
	6	

Harbottle, G.

1976 Activation analysis in archaeology. <u>Radiochemistry</u> 3:33-72. The Chemical Society, London.

Leese, M. N. and P. L. Main

1994 The efficient computation of unbiased Mahalanobis distances and their interpretation in archaeometry. <u>Archaeometry</u> 36:307-316.

Neff, H.

- 1992 Introduction. In <u>Chemical Characterization of Ceramic Pastes in Archaeology</u>, edited by H. Neff, pp. 1-10. Prehistory Press, Madison, WI.
- 1994 RQ-mode principal components analysis of ceramic compositional data. Archaeometry 36:115-130.
- 2000 Neutron activation analysis for provenance determination in archaeology. In <u>Modern</u> <u>Analytical Methods in Art and Archaeology</u>, edited by E. Ciliberto and G. Spoto, pp. 81-134. John Wiley and Sons, Inc., NY.
- 2001 Quantitative techniques for analyzing ceramic compositional data. In <u>Ceramic Source</u> <u>Determination in the Greater Southwest</u>, edited by D. M. Glowacki and H. Neff. UCLA Press, Los Angeles (in press).
- Neff, H., J. W. Cogswell, L. J. Kosakowsky, F. Estrada Belli, and F. J. Bove
 A new perspective on the relationships among cream paste ceramic traditions of southeastern Mesoamerica. Latin American Antiquity 10:281-299.

Neff, H., J. W. Cogswell, and L. M. Ross, Jr.

2001 Microanalysis as a supplement to bulk chemistry in archaeological ceramic provenance investigations. In <u>Patterns and Process: Essays in Honor of Dr. Edward V. Sayre</u>, edited by L. van Zelst and R. L. Bishop. Smithsonian Center for Materials Research and Education Publication Series (submitted).

Sayre, E. V.

1975 Brookhaven Procedures for Statistical Analyses of Multivariate Archaeometric Data. Brookhaven National Laboratory Report BNL-23128. New York.

Steponaitis, V., M. J. Blackman, and H. Neff

1996 Large-scale compositional patterns in the chemical composition of Mississippian pottery. <u>American Antiquity</u> 61: 555-572.

Weigand, P. C., G. Harbottle, and E. V. Sayre

1977 Turquoise sources and source analysis: Mesoamerica and the southwestern U.S.A. In <u>Exchange Systems in Prehistory</u>, edited by T. K. Earle and J. E. Ericson, pp. 15 - 34. Academic Press, New York.

Figure Captions

Figure 1:	Map of the Fort Bragg vicinity showing quarry locations and compositional groups identified in the study.
Figure 2:	Biplot derived from PCA of the variance-covariance matrix of the Fort Bragg lithic data. Vectors connect the origin with element coordinates. Ellipses represent 90% confidence level for membership in the groups.
Figure 3:	Same PCA space shown in Figure 2 but without element coordinates and with ungrouped specimens plotted and labeled. Ellipses represent 90% confidence level for membership in the groups.
Figure 4:	Bivariate plot of tantalum and thorium base-10 logged concentrations for the Fort Bragg lithic groups. Dashed lines indicate possible subgroups. Ellipses represent 90% confidence level for membership in the groups.
Figure 5:	Same bivariate plot as Figure 4 except that samples not ellipsed are labeled.
Figure 6:	Bivariate plot of tantalum and aluminum base-10 logged concentrations for the Fort Bragg lithic groups. Dashed lines indicate possible subgroups. Ellipses represent 90% confidence level for membership in the groups.
Figure 7:	Same bivariate plot as Figure 4 except that samples not ellipsed are labeled.
Figure 8:	Bivariate plot of dysprosium and lanthanum base-10 logged concentrations for the Fort Bragg lithic groups. Ellipses represent 90% confidence level for membership in the groups.
Figure 9:	Same bivariate plot as Figure 4 except that samples not ellipsed are labeled.

anid	Group	Sample ID	Group	Site Name	Site Number	Northing	Easting	Description
FBL001	uwhar 1	rHD-18A	Uwharries Eastern	HD-18A	31MG554	3918069	587355	plag-qtz phyric rhyolite
FBL002	uwhar 1	rHD-18B	Uwharries Eastem	HD-18B	31MG554	3918158	586937	plag-qtz phyric rhyolite
FBL003	uwhar 1	HD-18A*	Uwharries Eastern	HD-18A	31MG554	3918069	587355	plag-qtz phyric rhyolite
FBL004	uwhar 1	HD-18B*	Uwharries Eastern	HD-18B	31MG554	3918158	586937	plag-qtz phyric rhyolite
FBL005	uwhar 1	rHD-19	Uwharries Eastern	HD-19	31ST68	3913174	584185	plag-qtz phyric rhyolite
FBL006	uwhar 1	rHD-21	Uwharries Eastern	HD-21	31ST66	3914094	585325	plag-qtz phyric rhyolite
FBL007	uwhar 1	rHD-22	Uwharries Eastern	HD-22	31ST67	3915034	583325	plag-qtz phyric rhyolite
FBL008	uwhar 1	rHD-4A	Uwharries Western	HD-4A	none	3916984	583805	plag-phyric rhyolite
FBL009	uwhar 1	rHD-8	Uwharries Western	HD-8	31MG639	3918064	584215	plag-phyric rhyolite
FBL010	uwhar 1	HD-9	Uwharries Western	HD-9	31MG639	3918154	584125	plag-phyric rhyolite
FBL011	uwhar 1	rHD-10	Uwharries Western	HD-10	31MG117	3919205	584222	plag-phyric rhyolite
FBL012	uwhar 1	HD-10*	Uwharries Western	HD-10	31MG117	3919205	584222	plag-phyric rhyolite
FBL013	uwhar 1	rHD-13	Uwharries Western	HD-13	31MG640	3917943	583375	plag-phyric rhyolite
FBL014	uwhar 1	rHD-31	Uwharries Western	HD-31	31MG641	3926914	586797	plag-phyric rhyolite
FBL015	uwhar 1	rHD-20	Uwharries Southern	HD-20	31RD18	3912457	582233	aphyric rhyolite
FBL016	uwhar 1	rHD-24	Uwharries Southern	HD-24	31ST64	3913131	584180	aphyric rhyolite
FBL017	uwhar 1	rHD-54	Uwharries Southern	HD-54	31ST18	3912457	582233	aphyric rhyolite
FBL018	uwhar 1	rHD-55	Uwharries Southern	HD-55	31ST18	3912457	582233	aphyric rhyolite
FBL019	uwhar 1	rHD-56	Uwharries Southern	HD-56	31ST18	3912457	582233	aphyric rhyolite
FBL020	uwhar 2	rHD-25B3	Uwharries Asheboro	HD-25B3	31RD37	3949435	604806	felsic tuff and breccia
FBL021	uwhar 2	rHD-33	Uwharries Asheboro	HD-33	31RD854/1201	3957254	596221	felsic tuff and breccia
FBL022	uwhar 2	rHD-34	Uwharries Asheboro	HD-34	31RD855/1202	3957764	595700	felsic tuff and breccia
FBL023	uwhar 2	rHD-38	Uwharries Asheboro	HD-38	none	3954018	605863	felsic tuff and breccia
FBL024	uwhar 2	rHD-66	Uwharries Asheboro	HD-66	31RD37	3949435	604806	felsic tuff and breccia
FBL025	uwhar 1	HT-A	Uwharries Southeast	Horse Trough Mountain	*31MG378,31MG379	3908577	586311	plag-qtz phyric felsite

Table 1. Group assignments and descriptive data for Fort Bragg Lithics

anid	Group	Sample ID	Group	Site Name	Site Number	Northing	Easting	Description
FBL026	uwhar 1	HT-B	Uwharries Southeast	Horse Trough Mountain	*31MG378,31MG379	3908577	586311	plag-phyric felsite
FBL027	Chatham 1	CH-729-A	Chatham County	Quarry 729/Pittsboro	31CH729	3962302	655654	felsic aphanite/mudstone
FBL028	Chatham 1	CH-729-B	Chatham County	Quarry 729/Pittsboro	31CH729	3962302	655654	laminated metamudstone
FBL029	Chatham 1	CH-729-C	Chatham County	Quarry 729/Pittsboro	31CH729	3962302	655654	laminated metamudstone
FBL030	Chatham 1	CH-729-D	Chatham County	Quarry 729/Pittsboro	31CH729	3962302	655654	felsic metasandstone
FBL031	Chatham 2	CH-741-A	Chatham County	Quarry 741/Silk Hope	31CH741	3964340	647964	purple spherulitic felsite
FBL032	Chatham 2	CH-741-B	Chatham County	Quarry 741/Silk Hope	31CH741	3964340	647964	purple felsic breccia
FBL033	Chatham 2	CH-741-C	Chatham County	Quarry 741/Silk Hope	31CH741	3964340	647964	dark gray aphanite
FBL034	Chatham 2	CH-741-E	Chatham County	Quarry 741/Silk Hope	31CH741	3964340	647964	dark purple/black breccia
FBL035	Chatham 3	CH-RR-F	Chatham County	Siler City/Rocky River	none	3955002	642790	dark gray lam. metamudst.
FBL036	Chatham 3	CH-RR-R	Chatham County	Siler City/Rocky River	none	3955233	642626	plag +/- qtz phyric dacite
FBL037	Chatham 3	CH427	Chatham County	Siler City/Rocky River	31CH427	3955164	641835	v fine metasandst/siltstone
FBL038	Chatham 3	CH-RR-T	Chatham County	Siler City/Rocky River	none	3955282	642442	fine green felsic tuff
FBL039	Cape Fear	400-1	Cape Fear	Fayetteville/Cape Fear 1	31CD400	3891155	700233	white musc + gar aplite
FBL040	Cape Fear	400-2	Cape Fear	Fayetteville/Cape Fear 1	31CD400	3891155	700233	dk green metass/hornfels
FBL041	Cape Fear	400-3	Cape Fear	Fayetteville/Cape Fear 1	31CD400	3891155	700233	greenstone or metasandstone
FBL042	Cape Fear	424-1	Cape Fear	Fayetteville/Cape Fear 2	31CD424	3891125	700463	v fine greenstone (?)
FBL043	Person	PCQA	Person County	Powerline Quarry	31PR115	4015567	688965	green metamudstone (?)
FBL044	Person	PCQB	Person County	Powerline Quarry	31PR115	4015567	688965	aphyric dark gray felsite
FBL045	Person	PCQC	Person County	Powerline Quarry	31PR115	4015567	688965	green felsite
FBL046	Person	PCQD	Person County	Powerline Quarry	31PR115	4015567	688965	metamudstone/metasiltstone
FBL047	Durham	DUR-A	Northwest Durham County	Cains Chapel Quarry	31DH703	3999181	684723	dk green fragmental rock
FBL048	Durham	DUR-B	Northwest Durham County	Cains Chapel Quarry	31DH703	3999181	684723	dk gray aphyric felsite
FBL049	Durham	QNWDC	Northwest Durham County	Cains Chapel Quarry	31DH703	3999181	684723	gray aphyric felsite
FBL050	Durham	QNWDD	Northwest Durham County	Cains Chapel Quarry	31DH703	3999181	684723	pale green felsite

Table 1 (continued). Group assignments and descriptive data for Fort Bragg Lithics

Table 2. Mahalanobis Distance calculation for samples assigned to the Uwharrie 1 group.

PSW

Variables used are: PC01 PC02 PC03 PC04 PC05 PC06 PC07

Probabilities are jackknifed for specimens included in each group.

The	followi	Ing	specimens	are	in	the	file	
		Pro	babilities	5:				
ID.	NO.		PSW	From	n:]	Into:	
FBL(001	67.	.098		1		1	
FBL(02	86.	.462		1		1	
FBL(03	13.	.731		1		1	
FBL(04	33.	.178		1		1	
FBL(05	35.	.944		1		1	
FBL	06	85.	.730		1		1	
FBL	07	71.	.708		1		1	
FBL(08	42	.720		1		1	
FBL	09	б.	. 377		1		1	
FBL	010	95.	.327		1		1	
FBL)11	88.	.971		1		1	
FBL)12	63.	. 699		1		1	
FBL)13	1.	.028		1		1	
FBL)14	1.	. 225		1		1	
FBL()15	89.	.890		1		1	
FBL()16	21.	.596		1		1	
FBL()17	95.	.849		1		1	
FBL)18	52	.083		1		1	
FBL)19	55.	. 575		1		1	
FBLO	25	25	.467		1		1	
FBL(26	54	. 282		1		1	

Summary of Classification Success:

Classified Into Group:

PSW Total

From Group:

PSW	21	21
Total	21	21

Table 2. Mahalanobis Distance calculation and posterior classification for Uwharrie 2, Chatham 1, Chatham 2, Chatham 3, Cape Fear, Person, and Durham. The following specimens are in the file Uwharrie 2 Probabilities: ID. NO. PSW BEST GP. 0.271732 FBL021 1 1 FBL022 0.085673 FBL023 0.006314 FBL020 0.059781 1 1 FBL024 0.073068 1 The following specimens are in the file Chatham 1 Probabilities: ID. NO. PSW BEST GP. 1.040695 0.000054 FBL027 1 1 FBL028 0.001769 FBL029 1 FBL030 0.000210 1 The following specimens are in the file Chatham 2 Probabilities: ID. NO. PSW FBL031 0.000007 0.000001 PSW BEST GP. 1 FBL032 0.000001 1 FBL033 0.000001 1 FBL034 0.000001 1 The following specimens are in the file Chatham 3 Probabilities: ID. NO. PSW BEST GP. FBL035 0.000012 1 FBL036 0.000002 1 1 0.000007 FBL037 FBL038 0.000001 1 The following specimens are in the file Cape Fear Probabilities: ID. NO. PSW BEST GP. FBL039 0.040495 1 FBL040 0.000002 1 FBL041 0.000002 1 FBL042 0.000001 1 The following specimens are in the file Person Probabilities: PSW BEST GP. ID. NO. FBL047 0.000074 1 FBL0480.000139FBL0490.000115FBL0500.000065 1 1 1

The following specimens are in the file Durham Probabilities: ID. NO. PSW BEST GP. FBL043 0.000008 1 FBL044 0.140125 1 FBL045 0.000013 1 FBL046 0.000005 1 Principal Components Analysis Based All Lithic Samples

Simultaneous R-Q Factor Analysis Based on Variance-Covariance Matrix

Eigenvalues and Percentage of Variance Explained:

Eigenvalue	%Variance	Cum. %Var.
1.1995	53.7192	53.7192
0.3096	13.8634	67.5826
0.2492	11.1592	78.7419
0.1015	4.5472	83.2890
0.0752	3.3691	86.6582
0.0631	2.8241	89.4823
0.0505	2.2595	91.7418
0.0356	1.5938	93.3357
0.0318	1.4257	94.7613
0.0212	0.9514	95.7127
0.0169	0.7575	96.4702
0.0154	0.6895	97.1598
0.0149	0.6665	97.8263
0.0125	0.5578	98.3841
0.0101	0.4516	98.8357
0.0072	0.3230	99.1588
0.0052	0.2315	99.3902
0.0036	0.1626	99.5529
0.0026	0.1160	99.6688
0.0021	0.0929	99.7617
0.0014	0.0627	99.8244
0.0013	0.0595	99.8839
0.0009	0.0383	99.9223
0.0006	0.0290	99.9512
0.0005	0.0216	99.9729
0.0002	0.0098	99.9826
0.0002	0.0091	99.9917
0.0001	0.0044	99.9960
0.0001	0.0040	100.0000

Eigenvectors (largest to smallest):

La -0.0976 0.2015 -0.1772 0.1504 0.1381 0.1365 0.0082 -0.1175 0.1695 -0.1293 -0.0300 0.0409 -0.1810 0.0582 -0.0013 0.1254 0.0612 0.1672

0.0523 -0.1107 -0.3305 0.1408 -0.6365 -0.1110 0.0555 0.2077 -0.2667 0.1648 - 0.0812-0.1566 0.0071 -0.0976 0.1328 -0.1079 -0.1268 -0.0447 0.0647 -T.11 0.0360 0.0932 -0.0517 0.1401 -0.0097 -0.1872 0.1906 -0.0398 0.2392 0.0930 -0.2581 0.0469 0.0367 0.3170 0.1425 -0.1995 -0.1073 0.3629 -0.0543 0.0074 0.6051 -0.0779 0.2004 -0.2230 0.1253 0.0732 0.0915 -0.0467 -0.1437 -Nd 0.0082 -0.0821 -0.0982 -0.2035 -0.1707 0.2364 0.1449 0.2274 -0.0138 0.1860 $0.0999 - 0.4732 \quad 0.0906 - 0.0221 \quad 0.5072 - 0.0244 \quad 0.2077 \quad 0.2070 \quad 0.0354 - 0.0299 = 0.0000 \quad 0.00000 \quad 0.00000 \quad 0.0000 \quad 0.00000 \quad 0.00000 \quad 0.00000 \quad 0.0000 \quad 0.0000 \quad 0.000$ 0.0614 -0.0998 Sm -0.0828 0.1401 -0.1442 0.1726 -0.0613 -0.0252 0.0263 -0.0267 - $0.0143 - 0.0223 - 0.0794 - 0.0488 - 0.1554 \\ 0.0660 \\ 0.1493 - 0.0020 \\ 0.0697 - 0.1521$ 0.0908 0.0172 -0.0176 -0.1591 -0.0006 0.2017 -0.2805 -0.1679 0.3956 0.6854 0.1446 TT -0.0726 0.1905 -0.0860 -0.0265 -0.0265 0.1318 0.2902 0.2458 0.2018 0.4196 0.3901 -0.2634 -0.2221 -0.1184 -0.1905 -0.1896 0.0862 -0.2575 $-0.1692 \ -0.1691 \ -0.2139 \ 0.0434 \ 0.1292 \ 0.0842 \ 0.0103 \ 0.0048 \ -0.0988 \$ 0.0009 -0.0379 -0.1605 0.0255 -0.0944 0.1407 -0.1094 -0.1346 -0.0512 0.1026 -Yb 0.0416 0.0586 -0.0570 0.1157 -0.0153 -0.1413 0.1858 -0.0782 0.1210 0.0855 -0.2471 0.1156 0.0227 0.3488 0.0640 -0.1564 -0.0946 -0.0134 0.2191 0.0303 -0.7168 $-0.1008 \quad 0.1880 \quad -0.1739 \quad 0.0959 \quad 0.0965 \quad 0.1013 \quad 0.0243 \quad -0.0805$ Ce 0.0811 -0.0722 -0.0427 -0.0239 -0.1049 0.1576 0.0530 0.0599 0.0424 0.0080 -0.0226 -0.0025 0.0134 0.1163 -0.0203 -0.0739 -0.5398 -0.5186 -0.0115 -0.4810 0.1351 0.5156 0.2571 0.0211 -0.0152 0.0678 0.1905 0.3152 0.1142 -Co 0.1234 -0.4268 -0.2476 -0.2312 -0.0074 -0.2540 0.0548 -0.0713 0.0841 -0.0975 -0.0139 0.1319 -0.0451 0.2781 0.0910 0.0659 0.0509 0.0178 -0.00280.0093 0.0113 Cs $0.0372 \quad 0.4038 \quad 0.3558 \quad 0.0771 \ -0.0225 \ -0.4388 \quad 0.1415 \ -0.3592 \ -0.4388 \quad 0.1415 \ -0.4388 \ -0.4388 \quad 0.1415 \ -0.4388 \$ 0.1911 -0.1886 0.2325 0.2873 -0.1178 0.0665 -0.2193 -0.1101 0.1669 -0.0259 $-0.1173 \ -0.1346 \ -0.0331 \ -0.0571 \ \ 0.0684 \ \ 0.0166 \ -0.0119 \ -0.0122 \ -0.0524 \ -0$ 0.0026 -0.0300 0.0722 0.0625 0.0579 0.3070 0.2201 -0.2437 0.0396 -0.0663 Eu 0.0256 0.1028 -0.0461 -0.1435 -0.0270 -0.0135 0.3512 -0.0127 -0.3563 -0.5513 -0.0266 0.0025 0.1633 -0.1128 -0.1343 -0.3298 0.0489 0.1032 -0.0599 -0.0804 -0.0146 0.2112 0.1360 -0.0955 0.0643 -0.3132 0.1954 0.1788 0.0365 Fe $0.0392 \quad 0.0801 \quad 0.1486 \quad 0.0974 \quad -0.0426 \quad -0.1805 \quad 0.0619 \quad 0.0505 \quad 0.3101 \quad 0.1380$ 0.2194 0.0291 0.3868 -0.4403 -0.1238 -0.3360 -0.1074 0.1154 0.0120 -0.0712 -0.0877 Нf $-0.1189 \quad 0.0956 \quad -0.2242 \quad -0.0337 \quad 0.0626 \quad 0.1323 \quad -0.0011 \quad 0.0228 \quad -0.011 \quad 0.0228 \quad -0.0233 \quad -0.0011 \quad 0.0228 \quad -0.011 \quad -0.0228 \quad -0.011 \quad -0.011 \quad -0.0228 \quad -0.011 \quad -0.0228 \quad -0.011 \quad -0.0228 \quad -0.011 \quad -0.011 \quad -0.0228 \quad -0.011 \quad -0.011 \quad -0.0228 \quad -0.011 \quad -0.011$ 0.1481 -0.0156 0.0478 0.2756 0.1388 -0.2227 0.1546 -0.1454 0.0039 -0.0714 $-0.1208 \ -0.3379 \ 0.3822 \ 0.1023 \ -0.1493 \ 0.1496 \ 0.3664 \ -0.4132 \ -0.1767$ 0.1123 0.0720 -0.2086 0.3373 0.3012 0.0536 -0.3535 0.0782 -0.2311 0.0228 -Rb 0.1587 0.1461 0.0130 -0.2277 -0.0535 -0.0885 -0.0929 -0.0113 -0.2290 0.0231 0.4616 0.0699 0.1733 0.3656 -0.0817 -0.0018 0.0306 -0.0275 -0.0245 0.0049 0.0496 0.0912 0.3247 -0.2045 -0.6775 -0.0360 -0.3933 0.0326 0.0049 Sb 0.3053 0.1033 -0.0503 -0.0055 0.0634 0.1259 0.2624 -0.0150 -0.0288 0.0425

0.1112 0.0628 0.0534 0.0747 -0.0564 -0.0024 0.0217 0.0279 0.0265 0.0156 0.0110 0.1903 0.0059 0.1953 0.1612 0.0620 -0.2999 0.1377 0.3432 Sc 0.0614 0.1465 -0.0192 0.0596 0.0793 -0.3361 0.0906 0.3269 -0.2620 0.3739 0.0411 -0.3452 -0.1212 -0.0440 -0.0364 0.1069 -0.1771 -0.1196 0.0037 0.0227 0.0280 0.2933 0.1364 -0.2444 0.0914 0.3325 -0.0989 -0.3084 -0.2810 -Sr 0.2065 0.3926 -0.0772 -0.2446 0.0307 -0.1811 -0.1956 -0.2795 0.0110 0.3035 -0.0560 0.1110 0.0286 -0.0843 -0.0359 -0.0042 -0.0173 -0.0329 0.0312 0.0263 0.0108 Та -0.1801 0.2164 -0.1179 0.0303 -0.0255 -0.0350 0.0951 0.3486 -0.0148 -0.2812 0.0467 -0.1149 0.0964 0.1943 -0.2760 -0.1839 -0.3863 0.2738 -0.2822 0.1303 0.0982 -0.1654 0.0087 -0.3554 0.0813 -0.0576 0.0565 0.1296 0.0867 Тb -0.1100 0.1010 -0.1134 0.1954 -0.1824 -0.1693 0.0057 0.0934 -0.0442 -0.0059 -0.0768 -0.0258 -0.0660 -0.0818 0.1436 -0.0342 0.1445 0.0261 $0.0935 \quad 0.1527 \quad -0.3764 \quad -0.2045 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad 0.0790 \quad 0.5028 \quad -0.1701 \quad 0.3655 \quad -0.1065 \quad$ 0.3567 0.1318 -0.2854 0.2376 -0.0667 -0.0013 0.4838 0.0041 0.0648 0.0785 Тh 0.0110 0.0013 0.1242 0.0722 0.2136 -0.1986 -0.2379 0.4868 0.1379 -0.1234 0.1115 0.3101 0.1614 0.0065 0.0672 0.0754 0.0600 0.1052 0.1393 -0.0193 - 0.01620.1062 0.1666 -0.0823 0.1510 -0.2315 0.0445 0.1505 -0.0301 Zn 0.1583 0.3314 -0.5987 0.3009 0.1957 0.1681 -0.3787 0.0933 -0.0543 -0.1812 $-0.0712 \ -0.0366 \ -0.0104 \ \ 0.0223 \ \ 0.0461 \ \ 0.0090 \ \ 0.0534 \ \ 0.0067 \ \ -0.0404$ 0.0026 - 0.0159-0.0840 0.1172 -0.2470 0.0051 0.0827 0.1092 0.0038 0.0749 -Zr 0.1501 -0.0982 0.0753 0.3627 0.2526 -0.1236 0.0465 -0.3984 -0.2501 -0.0917 $0.3689 - 0.1155 - 0.2674 - 0.0809 \quad 0.1205 \quad 0.0797 - 0.2487 \quad 0.2865 \quad 0.0492 - 0.0492 = 0.0492 - 0.0492 = 0.0492 - 0.0492 = 0$ 0.1254 - 0.0547A] $0.0490 \quad 0.0275 \quad -0.0020 \quad -0.0201 \quad -0.0198 \quad 0.0722 \quad 0.0315 \quad 0.0146$ $0.0028 \ -0.0158 \ 0.0148 \ 0.0269 \ -0.2236 \ 0.0665 \ -0.0708 \ -0.0356 \ -0.1965 \ 0.0218$ $-0.2673 - 0.1048 \quad 0.3485 \quad 0.0376 - 0.3308 \quad 0.4348 - 0.0788 \quad 0.3582 \quad 0.4189 \quad 0.0788 \quad 0.3582 \quad 0.0788 \quad 0.3582 \quad 0.4189 \quad 0.0788 \quad$ 0.2725 0.0244 0.0062 0.1537 0.4481 0.1006 0.3849 0.2453 0.0406 0.2083 Ba 0.2032 0.2003 -0.0999 0.2311 -0.0973 0.2804 0.2740 -0.2967 0.1187 0.2229 0.0776 0.1437 0.0710 -0.0140 0.0735 0.0347 0.1075 -0.0192 0.0271 0.0257 0.0200 0.3111 0.1055 -0.0793 0.0401 0.0126 -0.0608 -0.6541 0.3952 Са 0.1613 -0.1600 0.0811 0.2323 -0.2865 0.0042 -0.1713 0.0701 0.0772 -0.2252 0.0062 -0.0411 0.0038 -0.0092 0.0739 -0.0360 0.0217 -0.0269 -0.0357 -0.0015 0.0013 -0.1407 0.1126 -0.1206 0.1593 -0.1391 -0.1492 -0.0162 0.1272 -Dv 0.0738 -0.0452 -0.1108 -0.0742 -0.1033 0.0137 0.1669 0.0033 -0.0246 0.0631 $-0.0854 \quad 0.3381 \quad 0.0934 \quad -0.2620 \quad 0.0872 \quad 0.4862 \quad -0.0816 \quad 0.0887 \quad -0.5739 \quad$ 0.0388 - 0.1124-0.1708 0.2665 0.2611 -0.2854 -0.0626 0.3430 -0.2485 -0.1966 K 0.0441 -0.0100 -0.1830 0.0232 -0.0371 -0.3769 0.1478 0.1081 -0.1543 -0.0429 $-0.3666 - 0.0226 - 0.2066 - 0.3105 \quad 0.0682 - 0.0727 - 0.0649 \quad 0.0071 \quad 0.0322 - 0.0727 - 0.0649 \quad 0.0071 \quad 0.0322 - 0.071 \quad 0$ 0.0028 -0.0174 Mn 0.2056 0.0907 -0.0418 0.3068 -0.1827 0.1138 -0.0995 -0.2987 0.5187 -0.0826 0.3799 0.0259 0.3659 -0.0071 0.1088 0.0261 -0.1746 0.0920

-0.1016 0.1683 -0.0055 0.1181 0.1147 0.1567 0.0809 -0.0290 0.0441 0.0367 0.0318 0.0222 -0.1667 -0.1550 -0.0509 0.0324 0.0196 0.2175 -0.2157 Na 0.0924 0.0339 0.0170 0.3229 -0.5945 -0.2248 -0.0749 0.0412 -0.3740 0.1099 0.1308 0.2749 0.0289 0.0929 0.1903 -0.0788 0.1222 -0.0958 -0.0139 0.0455 0.0387 Τi 0.2670 0.1361 -0.0850 -0.0704 -0.0845 0.1999 0.0200 0.0661 -0.5271 0.2558 0.2787 0.1841 0.0352 0.3442 0.2125 0.3334 -0.1484 -0.0035 -0.1608 0.1594 -0.1812 0.0719 -0.0205 -0.0294 0.0295 -0.0125 -0.0016 0.0358 0.0218 Scaled Factor Loading Matrix (largest to smallest component): -0.1069 0.1121 -0.0884 0.0479 0.0379 0.0343 0.0018 -0.0222 Τа 0.0302 -0.0188 -0.0039 0.0051 -0.0221 0.0065 -0.0001 0.0106 0.0044 0.0101 $0.0027 - 0.0050 - 0.0124 \quad 0.0051 - 0.0186 - 0.0028 \quad 0.0012 \quad 0.0031 - 0.0038$ 0.0016 -0.0008 -0.1715 0.0039 -0.0487 0.0423 -0.0296 -0.0319 -0.0100 0.0122 -Lu 0.0064 0.0136 -0.0067 0.0174 -0.0012 -0.0209 0.0191 -0.0034 0.0172 0.0056 $-0.0131 \quad 0.0021 \quad 0.0014 \quad 0.0116 \quad 0.0042 \ -0.0051 \ -0.0024 \quad 0.0054 \ -0.0008$ 0.0001 0.0057 -0.0853 0.1115 -0.1113 0.0399 0.0201 0.0230 -0.0105 -0.0271 -Nd 0.0015 -0.0120 -0.0128 -0.0253 -0.0208 0.0264 0.0145 0.0193 -0.0010 0.0112 0.0051 -0.0215 0.0034 -0.0008 0.0148 -0.0006 0.0046 0.0031 0.0005 -0.0006 - 0.0009-0.0907 0.0780 -0.0720 0.0550 -0.0168 -0.0063 0.0059 -0.0050 -Sm $0.0025 \ -0.0032 \ -0.0103 \ -0.0061 \ -0.0190 \ \ 0.0074 \ \ 0.0150 \ -0.0002 \ \ 0.0050 \ -0.0092$ 0.0046 0.0008 -0.0007 -0.0058 -0.0000 0.0051 -0.0062 -0.0025 0.0056 0.0068 0.0014 IJ -0.0795 0.1060 -0.0429 -0.0085 -0.0073 0.0331 0.0652 0.0464 0.0360 0.0612 0.0507 -0.0327 -0.0271 -0.0132 -0.0191 -0.0161 0.0062 -0.0155 $-0.0086 \ -0.0077 \ -0.0080 \ \ 0.0016 \ \ 0.0038 \ \ 0.0021 \ \ 0.0002 \ \ 0.0001 \ \ -0.0014 \ -$ 0.0000 -0.0004 -0.1758 0.0142 -0.0471 0.0448 -0.0300 -0.0338 -0.0115 0.0194 -Yb 0.0074 0.0085 -0.0074 0.0144 -0.0019 -0.0158 0.0187 -0.0066 0.0087 0.0052 -0.0126 0.0053 0.0008 0.0127 0.0019 -0.0040 -0.0021 -0.0002 0.0031 0.0003 -0.0067 -0.1104 0.1046 -0.0868 0.0305 0.0265 0.0255 0.0055 -0.0152Ce $0.0145 - 0.0105 - 0.0056 - 0.0030 - 0.0128 \quad 0.0176 \quad 0.0053 \quad 0.0051 \quad 0.0030 \quad 0.0005$ -0.0012 -0.0001 0.0005 0.0042 -0.0006 -0.0019 -0.0119 -0.0077 -0.0002 -0.0047 0.0013 0.5647 0.1430 0.0105 -0.0049 0.0186 0.0478 0.0708 0.0215 -Co 0.0220 -0.0622 -0.0322 -0.0287 -0.0009 -0.0283 0.0055 -0.0061 0.0060 -0.0059 $-0.0007 \quad 0.0060 \quad -0.0017 \quad 0.0101 \quad 0.0027 \quad 0.0017 \quad 0.0011 \quad 0.0003 \quad -0.0000$ 0.0001 0.0001 $0.0407 \quad 0.2247 \quad 0.1776 \quad 0.0246 \quad -0.0062 \quad -0.1102 \quad 0.0318 \quad -0.0678 \quad$ Cs 0.0341 -0.0275 0.0302 0.0357 -0.0144 0.0074 -0.0220 -0.0094 0.0120 -0.0016 $-0.0060 \ -0.0061 \ -0.0012 \ -0.0021 \ \ 0.0020 \ \ 0.0004 \ -0.0003 \ -0.0002 \ -0.0007 \ -0.007 \$ 0.0000 -0.0003 0.0791 0.0348 0.0289 0.0978 0.0604 -0.0612 0.0089 -0.0125 Eu $0.0046 \quad 0.0150 \quad -0.0060 \quad -0.0178 \quad -0.0033 \quad -0.0015 \quad 0.0353 \quad -0.0011 \quad -0.0256 \quad -0.0332$

-0.0014 0.0001 0.0061 -0.0041 -0.0039 -0.0084 0.0011 0.0015 -0.0009 -0.0008 -0.0001 0.2314 0.0757 -0.0477 0.0205 -0.0859 0.0491 0.0402 0.0069 Fe 0.0070 0.0117 0.0193 0.0121 -0.0052 -0.0201 0.0062 0.0043 0.0223 0.0083 0.0112 0.0013 0.0145 -0.0160 -0.0036 -0.0085 -0.0024 0.0017 0.0002 -0.0007 -0.0008 Нf -0.1302 0.0532 -0.1119 -0.0107 0.0172 0.0332 -0.0003 0.0043 -0.0264 -0.0023 0.0062 0.0342 0.0169 -0.0249 0.0155 -0.0123 0.0003 -0.0043 -0.0061 -0.0154 0.0143 0.0037 -0.0044 0.0038 0.0081 -0.0061 -0.0025 0.0011 0.0007 Rb -0.2284 0.1876 0.1504 0.0171 -0.0970 0.0196 -0.0519 0.0043 - $0.0283 \quad 0.0213 \quad 0.0017 \quad -0.0283 \quad -0.0065 \quad -0.0099 \quad -0.0093 \quad -0.0010 \quad -0.0165 \quad 0.0014$ 0.0235 0.0032 0.0065 0.0133 -0.0024 -0.0000 0.0007 -0.0004 -0.0003 0.0000 0.0005 0.0998 0.1807 -0.1021 -0.2159 -0.0099 -0.0988 0.0073 0.0009 Sb 0.0545 0.0151 -0.0065 -0.0007 0.0077 0.0141 0.0263 -0.0013 -0.0021 0.0026 $0.0057 \quad 0.0029 \quad 0.0020 \quad 0.0027 \quad -0.0016 \quad -0.0001 \quad 0.0005 \quad 0.0004 \quad 0.0004$ 0.0002 0.0001 0.2084 0.0033 0.0975 0.0514 0.0170 -0.0753 0.0309 0.0647 Sc $0.0110 \quad 0.0213 \quad -0.0025 \quad 0.0074 \quad 0.0097 \quad -0.0375 \quad 0.0091 \quad 0.0278 \quad -0.0188 \quad 0.0225$ 0.0021 -0.0157 -0.0045 -0.0016 -0.0011 0.0027 -0.0039 -0.0018 0.0001 0.0002 0.0003 $0.3212 \quad 0.0759 \quad -0.1220 \quad 0.0291 \quad 0.0912 \quad -0.0248 \quad -0.0693 \quad -0.0530 \quad -0.0530$ Sr 0.0369 0.0572 -0.0100 -0.0304 0.0037 -0.0202 -0.0196 -0.0237 0.0008 0.0183 -0.0028 0.0051 0.0011 -0.0031 -0.0011 -0.0001 -0.0004 -0.0005 0.0004 0.0003 0.0001 -0.1973 0.1204 -0.0589 0.0097 -0.0070 -0.0088 0.0214 0.0658 -Та 0.0026 -0.0410 0.0061 -0.0143 0.0118 0.0217 -0.0277 -0.0156 -0.0278 0.0165 -0.0144 0.0059 0.0037 -0.0060 0.0003 -0.0090 0.0018 -0.0009 0.00080.0013 0.0008 тb -0.1205 0.0562 -0.0566 0.0623 -0.0500 -0.0425 0.0013 0.0176 - $0.0079 - 0.0009 - 0.0100 - 0.0032 - 0.0081 - 0.0091 \quad 0.0144 - 0.0029 \quad 0.0104 \quad 0.0016$ 0.0048 0.0070 -0.0141 -0.0075 -0.0031 0.0020 0.0111 -0.0025 0.0052 -0.0035 0.0012 -0.3126 0.1322 -0.0333 -0.0004 0.1327 0.0010 0.0146 0.0148 Тh $0.0020 \quad 0.0002 \quad 0.0161 \quad 0.0090 \quad 0.0261 \quad -0.0222 \quad -0.0239 \quad 0.0413 \quad 0.0099 \quad -0.0074$ 0.0057 0.0141 0.0060 0.0002 0.0020 0.0019 0.0013 0.0016 0.0020 -0.0002 -0.0002 $0.1163 \quad 0.0927 \quad -0.0411 \quad 0.0481 \quad -0.0635 \quad 0.0112 \quad 0.0338 \quad -0.0057$ Zn 0.0282 0.0483 -0.0779 0.0373 0.0239 0.0188 -0.0380 0.0079 -0.0039 -0.0109 $-0.0036 - 0.0017 - 0.0004 \quad 0.0008 \quad 0.0013 \quad 0.0002 \quad 0.0012 \quad 0.0001 - 0.0006$ 0.0000 -0.0001 $-0.0920 \quad 0.0652 \quad -0.1233 \quad 0.0016 \quad 0.0227 \quad 0.0274 \quad 0.0008 \quad 0.0141 \quad -$ Zr 0.0268 -0.0143 0.0098 0.0450 0.0308 -0.0138 0.0047 -0.0338 -0.0180 -0.0055 0.0188 -0.0053 -0.0100 -0.0029 0.0035 0.0020 -0.0055 0.0042 0.0007 -0.0012 - 0.00050.0536 0.0153 -0.0010 -0.0064 -0.0054 0.0181 0.0071 0.0028 A1 0.0005 -0.0023 0.0019 0.0033 -0.0273 0.0074 -0.0071 -0.0030 -0.0141 0.0013 $-0.0136 \ -0.0048 \ 0.0130 \ 0.0014 \ -0.0097 \ 0.0111 \ -0.0017 \ 0.0053 \ 0.0060 \ -$ 0.0027 0.0002 0.0068 0.0855 0.2237 0.0321 0.1056 0.0616 0.0091 0.0393 Ba 0.0363 0.0292 -0.0130 0.0287 -0.0119 0.0313 0.0275 -0.0252 0.0085 0.0134

0.0039 0.0065 0.0027 -0.0005 0.0021 0.0009 0.0024 -0.0003 0.0004 0.0003 0.0002 0.3407 0.0587 -0.0396 0.0128 0.0035 -0.0153 -0.1469 0.0746 Са 0.0288 -0.0233 0.0106 0.0288 -0.0350 0.0005 -0.0172 0.0060 0.0056 -0.0136 0.0003 -0.0019 0.0001 -0.0003 0.0022 -0.0009 0.0005 -0.0004 -0.0005 -0.0000 0.0000 -0.1541 0.0626 -0.0602 0.0508 -0.0381 -0.0375 -0.0036 0.0240 -Dv 0.0132 -0.0066 -0.0144 -0.0092 -0.0126 0.0015 0.0168 0.0003 -0.0018 0.0038 $-0.0043 \quad 0.0154 \quad 0.0035 \quad -0.0095 \quad 0.0026 \quad 0.0124 \quad -0.0018 \quad 0.0013 \quad -0.0082 \quad -0.0082 \quad -0.0083 \quad -0.0082 \quad -0.0083 \quad$ 0.0004 - 0.0011K -0.1870 0.1483 0.1303 -0.0909 -0.0172 0.0861 -0.0558 -0.0371 $0.0079 \ -0.0015 \ -0.0238 \ 0.0029 \ -0.0045 \ -0.0421 \ 0.0148 \ 0.0092 \ -0.0111 \ -0.0026$ -0.0187 -0.0010 -0.0077 -0.0113 0.0020 -0.0018 -0.0014 0.0001 0.0005 -0.0000 -0.0002 0.2252 0.0505 -0.0209 0.0977 -0.0501 0.0286 -0.0224 -0.0563 Mn 0.0925 -0.0120 0.0494 0.0032 0.0446 -0.0008 0.0109 0.0022 -0.0125 0.0055 $-0.0052 \quad 0.0077 \quad -0.0002 \quad 0.0043 \quad 0.0034 \quad 0.0040 \quad 0.0018 \quad -0.0004 \quad 0.0006$ 0.0004 0.0003 0.0243 -0.0928 -0.0774 -0.0162 0.0089 0.0049 0.0489 -0.0407 Na $0.0165 \quad 0.0049 \quad 0.0022 \quad 0.0401 \quad -0.0725 \quad -0.0251 \quad -0.0075 \quad 0.0035 \quad -0.0269 \quad 0.0066$ 0.0067 0.0125 0.0011 0.0034 0.0056 -0.0020 0.0027 -0.0014 -0.0002 0.0004 0.0004 $0.2925 \quad 0.0757 \quad -0.0425 \quad -0.0224 \quad -0.0232 \quad 0.0502 \quad 0.0045 \quad 0.0125 \quad -0.0125 \quad$ Тi 0.0940 0.0373 0.0362 0.0228 0.0043 0.0384 0.0213 0.0283 -0.0107 -0.0002 $-0.0082 \quad 0.0073 \quad -0.0068 \quad 0.0026 \quad -0.0006 \quad -0.0007 \quad 0.0006 \quad -0.0002 \quad -0.0000$ 0.0004 0.0002